

Educating the Next Generation of Scientists & Engineers for America

William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT Dept. of Physics and Astronomy, UCLA

Motivations: Why does the Nation care? Why should students care?

Accelerators are the hallmark of highly technological societies

US Particle Accelerator School

Source: U. Amaldi

Major research machines are a tiny fraction of the total, but...

US Particle Accelerator School Sources: W. Maciszewski & W. Scharf, L. Rivkin, * EPP2010, ** R. Hamm

World-leading discovery science is America's competitive advantage

Accelerators are essential tools for discovery in physics, chemistry & biology

World-leading scientific education is also America's competitive advantage

We attract and train top talent from around the world to attend US universities & use US scientific facilities

DOE accelerators train future physicists, chemists & biologists for America

Roughly 2/3 of facility users are students

Who pilots the machines?

* These machines are conceived of, design, built, operated & up-graded by a few hundred accelerator physicists

 \rightarrow A large fraction of these were trained outside the US

- ★ Many of my generation were HEP & NP experimentalists who learned about machines at accelerators on campus

 → Very few of these now exist
- Modern accelerators also require a much larger (2 3x) cadre of knowledgeable engineers
 - → Many critical courses are no longer offered in engineering departments
 - e.g., power electronics, microwave & rf-systems

To summarize the problem

- * Accelerators are essential tools for discovery science
- ✤ DOE spends almost 1 B\$ on major accelerator facilities
- * > 26,000 accelerators in medicine, industry & national security constitute a multi-billion dollar/yr industry
- Yet...

Only a handful of universities offer any formal training in accelerator science & technology

Moreover, accelerators for future science...

- ₩ ...Will be more challenging to design & build
- ₩ ...Will be more challenging to operate

- ₩ ...Will need outstanding physicists & engineers to realize
- ₩ ... Will need experimentalists knowledgeable about accelerators to exploit fully

Reasons & excuses

- # Structure:
 - → Accelerator science is inherently cross-disciplinary
- # Prejudices:
 - → Physics departments, "accelerator science is 'just technology"
 - → EE departments prefer nano-technology & computing science
- # Practicalities:
 - \rightarrow It is difficult to enroll enough students for university approval
 - Even Cornell, UCLA, & Stanford can only offer core courses

→Accelerator R&D at universities is insufficient to support strong faculty lines

This serious challenge was recognized by HEPAP sub-panels

- ★ "The education & the training of the next generation of accelerator scientists & engineers is a serious concern."
- * "The limited number of educational opportunities at universities is insufficient to meet anticipated future needs." Advanced Accelerator R&D Sub-panel Report
- * "The present University Grant Program level of effort shortfall is not consistent with US intentions to host the ILC." University Grant Program Sub-panel Report

The USPAS is dedicated to responding to this challenge

DOE & its laboratories must...

* ...Attract top undergraduate talent to graduate study of accelerator physics as well as accelerator-based science

(not pictured) Marsh Roark (MIT)

The USPAS is a central element in accelerator education in America

The US Particle Accelerator School provides graduate-level educational programs in the science of beams and their associated accelerator technologies

We grant more academic credit in accelerator science & technology than any university in the world

Major US universities are our essential partners in education

- We universities with strong graduate programs in accelerator physics provide a large student attendance at USPAS
 - → Only Maryland, Cornell, MSU, UCLA, & Stanford have strong faculty lines (>2 professors)

Accelerator-based science needs several more such universities to assure an adequate, well trained professional workforce

- # Universities with research accelerators
 - → Emphasize innovation in accelerator science
 - → Promote undergraduate awareness
 - MSU 50 UGs annually; Cornell 60 UGs annually
 - → Offer exciting opportunities to engineering students
 - → Encourage student experimentalists to learn about accelerators
 - \rightarrow Are a vanishing breed

Eight universities represent 80% of university attendees at USPAS ('99 - '08)

Of remaining PhDs granted (30%) many are from other lab-associated universities
US Particle Accelerator School

Source: AARD 2005 Year Book, private communications (2008)

USPAS charter & financial model for educational stewardship

- ✤ Founded & nurtured under HEP auspices
- * Letter from the four Energy Research AD's allows & encourages national laboratory sponsorship & support (1992)
 - → Re-confirmed by DOE/SC & NSF in 2008
- * Constituted as a partnership of sponsoring institutions
 - → 7 SC laboratories (FNAL, ANL, BNL, JLAB, LBNL, ORNL, SLAC)
 - \rightarrow 2 NNSA laboratories (LANL, LLNL)
 - → 2 NSF funded universities (Cornell, MSU)
 - → 1 DHS office (DNDO/TARD)
- * Partner institutions have funded all program costs
 - → Partner support 30 k/yr + faculty (only increased once in ~20 years)
- ⋇ HEP funds USPAS Office at FNAL
 - → Managing Institution

USPAS educational operations stress academic rigor

- - \rightarrow 8 intense university, courses run in parallel (45 contact hours in 2 weeks)
 - \rightarrow Balance physics v. engineering, lectures v. hands-on
- ★ Typical attendance per school ~ 130 students (recently ~150)
 - → Scholarship support available for matriculated graduate students who take courses for credit
 - → Credit-student workload during course > 8 hr/day
 - \rightarrow Graded homework & exams
- # 40 university-style schools with >3100 individual students
 - → Attended more than >1x / >2x / 3x >1030 / >450 / >200
 - \rightarrow >200 have become intellectual leaders in their field
 - \rightarrow >25 USPAS graduate students have become USPAS instructors

We continually develop new offerings for our constituency

- ✤ New lecture courses in 2008
 - → Optics of High Energy Accelerators
 - → Radiation Imaging for Medicine & Homeland Security
 - → Special opportunity: "Vacuum Electron Devices"
- ₩ 2 new, *hands-on* courses introduced in 2008 & 2009
 - → Synchronization, Timing & RF Signal Processing
 - → Synchrotron Light-based Beam Diagnostics
 - → Accelerator Diagnostics

The strongest demand is for fundamentals

* In 2008 two medicine related courses had more than doubled to > 20 students

We expect another session of ~150 students; two-thirds receive financial support

* Years with visa issues; ~25% of attendees come from outside the US

The present USPAS financial model cannot sustain this level of student enrollment / support

USPAS partners provide 2/3 of our faculty

We thank our instructors for their dedicated work

DOE labs have made excellent use of USPAS

Normalizing MSU & Cornell by operating budget ==> interest level equivalent to Fermilab and SLAC

Degree Programs

Academic Outreach

Master of Science in Beam Physics and Accelerator Technology from Indiana University & USPAS 7 degrees awarded

6 Students currently enrolled in program

Requirements: 30 Credit Hours: with grade point average of B or above

- * IU/USPAS Courses & Master's Thesis (3 9 credits)
- * Final Examination or oral defense of thesis

Nearly all are lab employees who get a promotion as a result

Undergraduate outreach: Teng Internship at Argonne & Fermilab

LEE TENG UNDERGRADUATE INTERNSHIP IN ACCELERATOR SCIENCE & ENGINEERING

The Lee Teng Internship is a highly competitive education and research opportunity, open to students from US universities who have just completed their junior year in physics or engineering. Teng scholars will receive a full scholarship to attend the US Particle Accelerator School Summer Session followed by an eight-week research internship at Fermilab or Argonne National Laboratory. Research projects will be of sufficient depth for a senior thesis. The internship offers full travel support and a generous stipend.

For further information and to apply see www.leetengscholar.org

- Engage highly promising postjunior undergrads to study accelerator science & technology
- Encourage them to pursue graduate research & education in these fields
- Interns study Fundamentals at USPAS
- During remainder of summer, students undertake research project at the labs
- ** ANL and FNAL selected 11 Teng interns in 2008 & 2009
- We provide advice on graduate programs

Joint University-Fermilab Program: Accelerator Physics PhD

- ⋇ Established in 1987
 - → 1st graduate M. Syphers (UIC)
 - Taught 11 USPAS courses
- ※ On average 5-8 students in the program simultaneously
 → 37 PhD graduates in 22 years
- Students apply & propose course of research
 - → Admitted after passing university qualifying exams
 - → Each has an University advisor & FNAL mentor
 - → Research supported by FNAL

BNL & Stony Brook University: Center for Accelerator Science & Education

- * Joint effort to nurture & grow existing efforts in accelerator science
 - → BNL's RHIC, NSLS & ATF provide unique opportunities for cutting-edge graduate & undergraduate accelerator research
- * The CASE Mission:

Pursue cutting edge accelerator R&D,

Train next generation accelerator scientists - graduate & post doctoral

Attract undergraduate students to the graduate program through introductory courses, laboratory work & summer internships at BNL

Growth opportunities:

- → Expand successful Ph.D. and M.S. program
- \rightarrow Attract the next generation students
 - Write & teach a curriculum for undergraduates
 - Sponsor a Scholarship Program to attract top undergraduates to USPAS
- Now operating from SBU seed grant & matching funds from BNL

National Laboratory programs alone will *not* provide the accelerator professionals that America needs

Assuring the future vitality of accelerator-based science & business requires a new DOE investment in education

Impediments we face...

- # Undergraduates must be aware of the intellectual challenge & excitement of accelerator science
- * Top undergraduates expect to study at a great university
- Students should spend a large fraction of time on campus
 - → An education at a great lab is not an education at a great university

But, where?

How to begin...

- Some universities have occasional courses
 - \rightarrow Make them regular not just special topics
- * DOE lab facilities offer thesis research opportunities
 - → Augment with student support (tuition, assistantships, etc.)
- ★ ANL & FNAL have Lee Teng accelerator internships
 → Other labs should follow suit
- *** USPAS** offers the opportunity to co-list core courses

BUT, campuses need accelerator physics/engineering faculty → Strong university-based research programs to support faculty lines

1) Expand university-based programs

- * Vigorous, PI-driven program at universities allows growth of targeted, high priority R&D relevant to DOE/SC
 - → Essential for innovations in accelerator science
 - → Students can be trained & educated in accelerator science and technology in proximity to top experimentalists & theorists
- # University programs can take a broad perspective with relation to exploratory accelerator science & technology
 - → Offer broad intellectual resources both within physics and allied fields such as engineering, optical sciences, & materials sciences
 - → Optimize incubation of new ideas & fundamental understanding
- # Highly trained cadre of accelerator scientists will be essential to DOE/SC mission & national competitiveness

2) Assure USPAS financial stability

- Broad variety of USPAS offerings & scholarship support are crucial to existing programs in American universities
- USPAS provides an ideal attraction point& launching pad for undergraduates
- Maintaining the present level of enrollment & student support *requires* direct SC funding of USPAS sessions

Our students will be the future leaders for our field...

The time to invest is now!

Thank you

Schools across the Sea

CERN Accelerator School

- * Training courses for accelerator physicists & engineers twice a year
 - → Began in 1983
 - \rightarrow The courses take place in different member states of CERN
 - \rightarrow Consist of lectures & tutorials spread over a period of one or two weeks.
 - Participants from CERN member states & other countries world-wide
 - → Director: Daniel Brandt
- # Pattern of courses
 - → Spring course on a specialist topic
 - → Autumn course on accelerator physics
 - at the introductory level in even years
 - at the intermediate level in odd years
 - → In even years an autumn course in the framework of the Joint Accelerator School (JAS) program
 - JAS is a collaboration between US, CERN, Russia and Asia
- Sessions lead to high quality, written proceedings
 - → See http://cas.web.cern.ch/cas/Proceedings.html

The Joint Universities Accelerator School

- # Intensive program for students & modular courses for professionals
- * The full program covers many subjects during 10 weeks from January to March
 - → Two five-week courses taught by Europe's accelerator specialists
 - → Whole program includes about 180 hours of lectures, tutorials, guided studies & seminars
 - \rightarrow Lectures and tutorials are backed up by site visits / demonstrations
- * Organized by European Scientific Institute
 - → With support of CERN Accelerator School & several major European Universities
 - → Examinations under the control of one of the partner universities validate the courses
 - Successful candidates may obtain credits at their home university through the European Credit Transfer System (ECTS)
 - It is recommended that all students take the examinations, which are *mandatory* for those students who receive a grant

We make different choices to serve different needs

	USPAS	CAS	JUAS	JIAS
Rigorous for-credit courses	Y	Ν	Y	Ν
Degree program available	Y	Ν	Ν	Ν
Frequent regular sessions	2/yr	2/yr	1/yr	Ν
Standing organization w. staff	Y	Y	Y	Ν
Duration (weeks)	2	1.5 -2	10	1.5 -2
On campus	Ν	Ν	N	Ν
Conference center/ hotel	Y	Y	Y	Y
Scholarships available	Y	Y	Y	Y
Specialty courses	Y	Y	Y	Y
Fundamental courses	Y	Y	Y	Ν
Hands-on courses	Y	Ν	Ν	Ν
Proceedings	Ν	Y	Ν	Ν
Lecture notes on web	Y	Y	N?	Y ?

There are also specialty schools such as the recent Linear Collider Schools